
NASA Technical Memorandum 103914

A Discrete Fourier Transform for
Virtual Memory Machines
David C. Galant, Ames Research Center, Moffett Field, California

March 1992

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035 -1000

Summary

The discrete Fourier transform (DFT) is a pervasive tool in scientific and engineering calculation.

It lies at the heart of many methods for solving partial differential equations, data analysis, statistical

calculations, and of course Fourier Analysis (see ref I). More than one hundred papers on fast

algorithms have been published! So, why another? Most DFT algorithms assume use of high

speed computer memory that is local and contiguous; others assume the data is stored in blocks of

external - remote - memory. In contrast, the efficient DFT algorithm provided in this paper

assumes neither case; instead, it works efficiently on computers with virtual or cache memory

where the location of the data is mapped automatically onto a small high speed memory by the

computer's operating system. Important features of the algorithm are:

• no details of page mechanism to be used

• the code should be compact and clear

• no auxiliary storage should be required

• efficient execution when the data resides entirely in high speed memory.

Additionally, a matrix theory of the DFT is given. This theory provides the basis of the "fast"

calculation of the transforms and the proofs give the insight to efficient organization of the calculation

under different assumptions.

Implementing DFT's on Virtual Memory Machines

The DFT is most directly expressed as the product of a man'ix with a vector. If (x_, x2..... xn) r

denotes the data to be transformed, o,=exp(2r_i/n), and

_n "-

1 1

1 o_ 1

1 ton 2

1 0_1 - n

° • • 1

2 ... col-nton

2.(1 - n)
On 4 . . . ¢0t)n

(0_1 - n)-(1 - n)

(1)

then a = Wn- x is the discrete Fourier transform of x. If a super bar is used to denote complex

conjugate, 1 _nn 1.x is the inverse discrete Fourier transform of x. qCn is called the discrete Fourier

operator.

Appendix B provides decompositions of the matrix ,ren as a product of sparse matrices. These

decompositions provide a framework for implementing versions of fast DFTs. The results are not

new, but the details of the proofs provide computational insight.

DFT algorithms to evaluate (1) are based on writing _ as a product of sparse matrices which

are then sequentially applied to x (ref 2, ref 3, ref 4.). The decomposition is not unique, so we may

choose one that has properties that we find important.

The salient feature of computers with hierarchies of memory is that transfers of data between

different levels is by blocks rather than individual words. Therefore, more complete use of data in

a block yields a premium in inter-memory traffic. The features that we wish to emphasize, then,

flow from a high locality of data. One simple approach is to access data in sequentially increasing

order and to use every datum as much as possible before a block is discarded. Unfortunately, the

latter is difficult to achieve without detailed knowledge of block sizes, but, careful use of the

former yields almost all of the efficiency gain.

The following discussion assumes that the calculation overwrites the data to be transformed and

the vector length is a power of two. Appendix B decomposes the DFT into a two phases. One

scrambles the data; the other converts the data into its Fourier coefficients.

In the scrambling phase, usually the binary reversal of an index is calculated directly and the

two elements of the vector are exchanged. A number and its binary reversal usually occur in

different parts of the vector. The binary reversal of two successive integers are in different halves

of the vector; even integers have binary reversals in the lower half, odd integers have their binary

reversal in the upper half. So potentially almost as many block transfers occur as half the number

of elements in the vector. Direct application of the unscrambling matrix decomposition requires one

sequential pass through the data for each factor. Thus, total data motion is considerably reduced.

When the vectors are long and real memory is small, the overhead from data motion is reduced

considerably.

During the other phase of the DFT, the computation can be organized in several ways, one is to

apply a factor of the decomposition to the same element in each block. This minimizes the computation

of trigonometric function values (which are mostly calculated by recurrence relations), but does not

address the data in a strictly sequential fashion. This organization is advantageous for machines

with vector processing capabilities. Applying a factor of the decomposition on a complete block by

complete block basis leads to strictly sequential access of data at the cost of repeated calculation of

trigonometric function values. However, the decrease in overhead from data motion can often more

than compensate this cost. This organization is also more suitable for machines with multiple

processors than the one above.

The algorithm given in Appendix A is based upon the factorization in equation (15b). The

transformation phase is based upon base four transforms rather than purely base two transforms

because there is an increase in computational efficiency without complication to the coding of the

algorithm.

References

1. Henrici, Peter, "Fast Fourier Methods in Compuational Complex Analysis," SIAM Review 2 1,

No.4, October 1979, pp. 481 - 527.

2. Kahaner, David K., "Matrix Description of the Fast Fourier Transform," IEEE Transactions on

audio and Electroacoustics, A U-18, No. 4, December 1970, pp. 442-450.

3. Rose, Donald J., "Matrix Identities of the Fast Fourier Transform," Linear Algebra and Its

Applications, 2 9, 1980, pp. 423-443.

4. Nicholson, Peter J., "Algebraic Theory of Finite Fourier Transforms," Journal of Computer and

System Sciences, 5, 1971, pp. 524-547.

5. Polge, Robert J., NB. K. Bhagavan, and James M. Carswell, "Fast Computational Algorithms

for Bit Reversal," IEEE Transactons on Computers, C-23, No. 1, January 1974, pp. 1-9.

6. Brenner, Normal M., "Fast Fourier Transform of Externally Stored Data," IEEE Transactions

on Audio and Electroacoustics, AU-17, No. 2, June 1969, pp. 128-132.

7. Singleton, Richard C., "A Method for Computing the Fast Fourier Transform with Auxiliary

Memory and Limited High-Speed Storage," IEEE Transactions on Audio and Electroacoustics,

AU-15, No. 2, June 1967, pp. 91-98.

8. Temperton, Clive, "Self-Sorting Mixed-Radix Fast Fourier Transforms," J. of Comp. Phys.,

52, (1983), pp. 1-23.

3

APPENDIX A - Fortran Code

C ¸

SUBROUTINE VMDFT (N, A, IER)

C VIRTUAL MEMORY DISCRETE FOURIER TRANSFORM I

C

C THIS ROUTINE EVALUATES I

C I

C N-I JK I

.C X(J) = SUM (A(K)W), J = 0(1)N-I I

C K=0 I

C I

C WHERE W = EXP(2*PI*I/N), I = SQRT(-I), N IS A POWER OF 2 I

C

C FORMAL PARAMETERS: I

C I

C N INTEGER, IN. LENGTH OF A I

C I

C A COMPLEX VECTOR OF LENGTH N. AT ENTRY, A CONTAINS THE I

C DATA TO BE TRANSFORMED. AT EXIT, IT CONTAINS THE I

C TRANSFORMED DATA. I

C I

C IER INTEGER, OUT. ERROR INDICATOR I

C IER = 1 IF NO ERROR HAS BEEN DETECTED I

C IER = 2 IF N .LE. 0 ON ENTRY I

C IER = 2 IF N IS NOT A POWER OF 2 I

C ...

C CACM CATOGORY: Jl I

C ...

C KEYWORDS: FOURIER TRANSFORM, VIRTUAL MEMORY, BINARY REVERSAL I

C ...

C THE ALGORITHM IS A VARIATION OF THE COOLEY-TUKEY ALGORITHM. I

C I

C i) THE TRANSFORMATION IS DONE IN PLACE I

C 2) NO AUXILIARY TABLES ARE REQUIRED I

C 3) REQUIRED TRIGONOMETRIC VALUES ARE USED IN NORMAL ORDER I

C AND ARE GENERATED FROM STABILIZED RECURRENCE RELATIONS I

C 4) NO BINARY REVERSE COUNTER IS REQUIRED I

C 5) THE DATA IS ALWAYS ACCESSED IN MONOTONE INCREASING ORDER I

C 6) THE ORGANIZATION HAS A HIGH LOCALITY OF DATA I

C 7) THE MINIMUM NUMBER OF PASSES OVER THE DATA IS REQURIED I

C 8) THE ALGORITHM NEEDS NO PAGE SIZE INFORMATION, BUT THERE I

C MUST BE AT LEAST 4 DATA PAGES PLUS ROOM FOR THE CODE FOR I

C IMPROVEMENT TO SHOW I

C 9) THE CODE IS CLEAR AND COMPACT I

C 10) THE COST IN CPU TIME OVER THE MOST EFFICIENT DFT ALGORITH I

C IS SMALL I

C

USAGE: I

I

TO EVALUATE THE FOURIER TRANSFORM OF THE N = 2**M DATA STORED I

IN THE COMPLEX VECTOR A: I

I

CALL VMDFT(N, A, IER) I

C ...

4

C ..

C PARAMETER DECLARATIONS

C ...

INTEGER N, IER

COMPLEX A(N)

C ...

C INTERNAL DECLARATIONS

C

COMPLEX A0, AI, A2, A3, S, T

REAL CI, C2, C3, DC, DS, FOUR, HALF, ONE, QRTR, RAD

REAL SI, $2, $3, THRHLF, TI, TR, TWO, ZERO

INTEGER K, KB, KK, KP, KS, KSH, KSP, KSPM, KSPP, KST

INTEGER K0, KI, KIMX, K2, K2MX, K3, M, MM, MP, NL

C CONSTANTS

C ...

DATA ZERO /0.0/, ONE /i.0/, TWO /2.0/

DATA FOUR /4.0/, HALF /0.5/, QRTR /0.25/, THRHLF /1.5/

RAD = FOUR * ATAN(ONE)

C ...

C STAGE 0 - TEST INPUT AND INITIALIZE I

C ...

IER = 1

NL = N

IF (NL .LE. 0) RETURN

IER = 2

C .. >>> COMPUTE LOG BASE 2 OF N

M = 0

MM = 1

I0 IF (MM .GE. NL) GOTO 20

MM = MM + MM

M = M + 1

GOTO i0

20 IF(MM .GT. NL) RETURN

IER = 0

MP = M / 2

5

C

C

C

STAGE 1 - SCRAMBLING THE DATA I

C

C

C

C

C--

C

C

C

C

C

C

BINARY REVERSAL BY SEQUENTIAL EXCHANGE OF SYMMETRICALLY LOCATED I

BITS REQURIED M/2 SEQUENTIAL PASSES OVER THE DATA AND HAS MUCH I

LOWER OVERHEAD FOR MACHINES WITH PAGED MEMORY THAN USING A I

BINA/_Y REVERSAL COUNTER I
..

THE CODE IS A VERY SLIGHTLY MODIFIED VERSION OF THE SUBROUTINE

"UNSBIN" GIVEN IN

POLGE, R. J., B. K. BHAGAVAN, AND J. M. CARSWELL, "FAST

COMPUTATIONAL ALGORITHMS FOR BIT REVERSAL," IEEE TRANSACTIONS

ON COMPUTERS, C-23(I), PP. 1-9.

KSP = 1

KSH = NL

I

I

I

I

I

...............................

C >>> DO (M/2) PASSES OVER THE DATA

DO 140 KP = i, MP

KSPP = KSP + 1

KSPM = KSP - 1

KS = KSH

KSH = KSH / 2

KST = KSH - KSP

KSP = KSP + KSP

C >>>STEP THROUGH THE FILE SEGMENTS

DO 130 K0 = KSPP, NL, KS

KIMX = K0 + KST

C >>>STEP THROUGH BLOCKS IN EACH FILE SEGMENT

DO 120 K1 = K0, KIMX, KSP

K2MX = K1 + KSPM

C ... >>>SWAP TWO BLOCKS OF DATA

DO ii0 K2 = KI, K2MX

K3 = K2 + KST

S = A(K2)

A(K2) = A(K3)

A(K3) = S

ii0 CONTINUE

120 CONTINUE

130 CONTINUE

140 CONTINUE

6

C ...

C STAGE 2 - THE TRANSFORMATIONS I

C ...

C RADIX 4 + 2 FAST FOURIER TRANSFORM ROUTINE USING A COOLEY-TUKEY I

C LIKE ALGORITHM FOR BINARY REVERSED DATA. THE ORGANIZATION USED I

C REQUIRES THE MINIMUM NUMBER OF SEQUENTIAL PASSES THROUGH THE I

C DATA AND ALLOWS THE SINE-COSINE VALUES TO BE GENERATED IN I

C SEQUENTIAL ORDER AS WELL. I

C ...

C I

C THE CODE IS ADAPTED FROM THE ALGOL PROCEDURE "REVFFT4" FROM I

C CACM ALGORITHM 345, "ALGORITHM 345, AN ALGOL CONVOLUTION I

C PROCEDURE BASED ON THE FAST FOURIER TRANSFORM," BY RICHARD C, I

C SINGLETON. I

C ...

C IF M IS ODD THEN DO A RADIX 2 TRANSFORM

C ...

KSP = 1

IF (2 * MP .EQ. M) GOTO 215

DO 210 K0 = I, NL, 2

K2 = K0 + 1

A0 = A(K2)

A(K2) = A(K0) - A0

A(K0) = A(K0) + A0

210 CONTINUE

KSP = KSP + KSP

RAD = HALF * PAD

C ...

NOW DO M/2 RADIX 4 TRANSFORMS

C ...

215 IF (MP .LT. 1) RETURN

DO 250 KP = i, MP

RAD = QRTR * RAD

C ...

C NOTE: SIN-COS REFERENCES

C CAN BE REPLACED BY

C INLINE APPROXIMATIONS

C ...

DC = TWO * SIN(RAD) ** 2

DS = SIN(TWO * PAD)

KST = 4 * KSP

C

C

C

C

C

C

C

C

C

225

230

240

C

C

250

DO 240 KB = I, NL, KST

Cl = ONE

S1 = ZERO

DO 230 KK = I, KSP

K = KK - 1

K0 = KB + K

K1 = K0 + KSP

K2 = K1 + KSP

K3 = K2 + KSP

A0 = A(K0)

A2 = A(KI)

A1 = A(K2)

A3 = A(K3)

IF (K .EQ. 0)

BLOCK BEING TRANSFORMED

TRANSFORM THE BLOCK

GOTO 225

............................

ADVANCE TRIG FUNCTION VALUES

............................

C2 = C1 - (DC * C1 + DS * SI)

S1 = S1 + (DS * C1 - DC * SI)

THE FOLLOWING 3 STATEMENTS COMPENSATE

FOR TRUNCATION ERROR. IF ROUNDED

ARITHMETIC IS USED, REPLACE THEM WITH

Cl = C2

......................................

C1 = THRHLF - HALF * (C2 * C2 + S1 * SI)

S1 = C1 * S1

C1 = C1 * C2

C2 = C1 * Cl - S1 * S1

$2 = TWO * S1 * C1

C3 = C2 * C1 - $2 * S1

$3 = C2 * S1 + $2 * C1

............... >>>APPLY RADIX 4 TRANSFORM

A2 = A2 * CMPLX(C2, $2)

A1 = A1 * CMPLX(CI, SI)

A3 = A3 * CMPLX(C3, $3)

S = (A0 + A2)

T = (AI + A3)

A(K0) = S + T

A(K2) = S - T

S = (A0 - A2)

T = (AI - A3)

TR = REAL(T)

TI = AIMAG(T)

T = CMPLX(-TI, TR)

A(KI) = S + T

A(K3) = S - T

CONTINUE

CONTINUE

KSP = KST

CONTINUE

END

RETURN

APPENDIX B - ALGEBRAIC THEORY

DFT Identities

This appendix gives the mathematical background and required identities for the DFT viewed as

a matrix operator. We begin with some definitions. The results have been previously published,

but the development is more complete than published results and the actual development is more

directly useful in teasing out details for actual implementation.

A permutation matrix is any matrix which can be obtained from an identity matrix by

permuting its rows or columns. Let the set of numbers {cO)}, 0 _<j < p - 1, be a permutation of

the integers 0 ... p - 1, and let {r(j)} be the inverse permutation:

r(c(j)) = c(r(j)) = j

The permutation matrix P, of order p, is defined by

Pj k = _SLj,r(k)) = 5(c(j),k), 0 < j, k < p - 1.

The functions r(j) and cO) are called the row and column functions, respectively. Thus the

matrix has just one non-zero element (equal to unity) in each row and column. The unit element in

row j is cOL and the unit element in column k is in row r(k).

The following properties of permutation matrices follow directly from the definition:

(1) The transpose is the inverse: pT = p- t

(2) If Pt and P2 are permutation matrices of the same order with row functions r_ and r2 and

columns cl and c2, then their product P = P_P2 is a permutation matrix with row and column

functions given by the transitive formulas

r(j) = r I [r2(j)]

cO) = cdc,(j)]

(3) IF X is an arbitrary matrix, the effect of premultiplying by a permutation matrix is to permute

the rows, while post multiplying permutes the columns:

Let

Y -PX

Z=XP

Then

In particular, if

then

U = XPT

Uj k -" Xj, co 0

9

That is, premultiplying by P produces a permutation of the rows, postmultiplying by the transpose

pX produces the same permutation of the columns.

Two important permutation matrices are the square deal Sv. q and its transpose (and inverse)

the perfect shuffle, Tq, p, each of order pq, def'med by the the row and column functions

Cs(j + lq) = jp + l = rT(j + lq)

rs(jp + 1) = j + lq = CT(Jp + l)

with 0<j < q- 1,0<k<p- 1.

Premultiplying by S represents dealing a deck of pq cards to p players, while premultiplying by T

represents shuffling (merging) p decks of q cards each. The terminology is actually somewhat

ambiguous, since the roles are reversed in postmultiplication. Note the identities

Sq, p = Tp, q = ST,q = Sp!q

Sp, p =Tp.p

Sp, 1 = Sl, p = Tp, 1 =Tp. 1 =Ip

The tensor product of two matrices, A and B, denoted A®B, is the partitioned block matrix

obtained by mukiplying each element of A by the matrix B

A®B = (Al.m B)

more specifically, if A is of order p and B is of order q, and C = AOB, then C is of order pq, with

elements given by

Cj+lq, k+m q=Al, m Bj, k,0<j,k-<q-l,0<-l,m-<p- 1.

The following properties follow directly from the definition:

Associative Law:

{A®B)@C = A@{BOC)= AOBOC (2)

Similarity Law: If A is of order p and B is of order q, then

B ® A = Tp.q (A ® B) Sp,q (3)

Transpose: {A®B) T = ATOB T (4)

Inverse: {A®B) -I = A-lOB-1 (5)

Identity:
A®II = II®A = A I

Ip@Iq = Ipq I (6)

10

Multiplicative Law: (AB_(CD) = (A_2}(B®D) (7)

Distributive Law: I@I-IAj=I"[(I®Aj),(I-IAj/®I=I"I(Aj®I) (8)
J J _J] J

where the Aj are all of the same order, I is an identity matrix of arbitrary order, and 1-[denotes the
i

ordinary product of a finite number of factors.

Basic Factor Theorem If P is of order p and Q is of order Q. Then

P®Q = (Pip) ® (IqQ)

= (P ® Iq)(Ip ® Q)

= (IpP)® (Qq)

= (Ip ® Q)(P ® I_)

(9)

Thus, the tensor product can be expressed as an ordinary (commutative) product), each factor

being a tensor product with an identity matrix.

If P and Q are permutation matrices, then so is their tensor product A = P®Q, and its column

function is

CA(j + lq) = cQ(j) + q Cp(1), 0 < j < q, 0 < 1 < p

and its row function is

rA(k + mq) = rQ(k) + qrp(m), 0 < k < q, 0 < m < p

since

Aj + lq, k + mq = PI, mQj, k

The tensor product has a simple representation when one factor is a permutation matrix and the

other is an identity matrix. Let P be a permutation matrix of order n with column function c(j), and

let I, be the identity matrix of order s. The matrices

Q = P®Is

R = Is®P

11

arepermutationmatriceswithcolumnfunctions

CQ(jS+I) = $c(j)+ 1/

CR = 111+ CO) /

0<j<n
O<l<s

So, if P is regarded as the operator that shuffles (permutes) a deck of cards, then the effect of Q is

to perform the same permutation on a deck of "packets", each packet containing s cards that are

stuck together. Thus, for example, the matrices

Sp.q @ Is

Tp.q @ Is

(10)

can be described as the "dirty deal" and the "sticky shuffle" respectively. On the other hand, the

effect of R is to shuffle s decks in parallel and then stack them together. Combining these gives the

formula for the triple product:

Let B = Ip ® Pq ® I, where Pq is a permutation matrix of order q with column function Cp(j). Then

B is a permutation matrix of order pqr with column function cB(j) given by

cB(aqr + lSr + 7) = otqr + rcp(l_) + 7

for 0 <_ct < p, 0 <_13< q, 0_<'/< r

More generally, if A, B, C are arbitrary matrices of order p, q, r respectively, then the elements of

the triple product

D = A®B®C

are given by

Diqr + kr+ m, jqr + ir + n = Ai. jBk. lCm, n

0_< i,j < p; 0<_ k,l <q; 0_< m, n < r

Even Order DFT

The reduction of the Fourier matrix of even order M = 2q to a product of simpler matrices

depends upon the simple observation

12

t_2jk 12q -- O')jk 0 --< j <q

2(÷ 1)k coJk_q/ 0 -<k < 2q

That is, the even numbered rows of 'W_ contain the elements of 'Wq, while the elements in the

odd numbered rows are products of elements from both q4/qand 'W_. This suggests permuting the

rows of W_ to bring the even numbered rows together in one block and the odd numbered rows

into another. This can be done by using Szq. Define V = Szqq, te_a.The elements of V are

Wj,a = o.):

Vj {_Oq # Oi.) 2q k+q,k -"

for 0 < j, k < q. The columns can be partitioned by noting

O.)qJOc"_q) = C0:

+ q) --
0.)_ (k _ --(.0 .mqk

for 0 _<j, k < q. Thus the elements of V are

Vj,k -" (,0:, Vj, k+ q -" f.0:

Vj+q, k "-- (.0q-lk(,02q k, Vj+q,k+ q "- --.0.)qjk(,02q k

for 0 _<j, k < q. Define

D_x)=

i

1

X

X 2

0

0

xq - 1

Dq(1) = Iq,Dl(X) = l{

13

Then

v=[_vq -WqO4O_q)l_qDq(O2q)

o' ',]OWq

which using the results from the previous section can be written compactly as

W2q = T2, q {12®'Wq)A2,q ('/4)2®Iq) (11)

V_/here

2.q--[o oDq(_q)]o_W2:[1:]l-

The Fundamental Factor Theorem

From the above, the DFT of M = 2q points can be written as a product of sparse matrices. If

the integer q is, itself, a power of two, then the above can be iterated to yield the complete

Cooley-Tukey algorithm. However, the process generalizes to general factors.

Let

Ap,q =

Iq

° .

Dq(fDPq 1) __

14

Note that

Aq. p = Tp.q Ap. q Sp. q (12)

and reduces to the identity if either subscript is unity

Ap, 1 -" A l, p = Ip

Fundamental Factor Theorem

Wpq= Tp. q (Ip ® Wq) Ap, q (Wp (_) Iq)

altematively,

q4)pq =(Wq @ [p) Aq. p(Iq _) qglp) Tp. q

(13a)

(13b)

Proof: We first prove (13a). By analogy with the even order case. Start by applying the square deal

to W

The elements of V are

But

so that

V = Sp,q Wpq

pq-1

Wj + lq.k+ mq =
r=O

Sp,qj + lq, r ¢/_r, k + mq, 0--< j, k <q, 0 <_ 1, m < p.

Sp,qj + Iq. n = _[n, cs(j + lq)]

= _n, jp + 1]

Vj + lq, k + mq = Wjp + !. k + mq

= o){jp+l)(k + mq)
Pq

but recalling that

the identities

O)pq = e2ni/pq,

t0Pq = tOq

O)qq -- _q

¢%P_q= I

give

15

r.-.ikt.,d k ¢.,,1 m
Vj + lq. k + mq = W-q ,_pqv.,p

Thus, V is a partitioned block matrix, with (1, m) denoting the row and column position of each

block and (j, k) denoting the local row and column position of each element within the block V =

C¢_,,,), 0 _<1, m < q. Hence,

vl.m--WqDdO qk%%

Since Wq is a common factor of every block and Dq(tor_ _) is a common factor of every block in row

1, V can be factored:

W _.

0

0 D4 q) 0

0

that is,

V =(Ip® Wq)Ap, q(Wp ® Iq)

Since, V = Sp. q W_ and Tp. q is the inverse of Sp. q, the result follows immediately.

(13b) follows by writing

Wpq = Tp. q (Ip ® Wq} Sp. q Tp, q Ap, q Sp.q Tp. q (Wp ® lq) Sp, q Tp, q

= (Tp, q (Ip ® Wq) Sp, q)(Tp, q Ap, q Sp, ql{Tp, q (Wp ® Iq) Sp, q) Tp, q

and then applying (3) and (12).

Complete Factor Theorem

Clearly the fundamental factor theorem can be iterated if either of the integers p, q is not prime. For

example, take p = P2, q = P, then

16

Wp2p, = Tp2. pI (Ip2®Wp,JAp2. p_(Wp2®Ip,}

Now take p = P3' q = P2Pl in the fundamental theorem giving

Wp}p2p, = TI_. p2p, (Ii_®Wp2p,)Ap,. r_p , (Wp_®Ip,p,}

Inserting the expression given above for ¢lYp:pl and using the distributive law,

Wp]p2p, = Tp,, p_p, {Ip,®Tp2 ' p,lIp, p2@Wp,IIp3@Ap2 ' p,_Ip,@Wp2@Ip,) Ap], _p, ('W_®Ip_p,}

To continue the process, only a proper notation is necessary. To this end, consider an indef'mite

sequence of positive integers, {p}}, each pj > 1. Define arrays reand q.j by

so that

so that

Further, define

so that

Now note that

j-1

rj= I-I Pk, j >2
k=l

q... = 1, n>0

q_.j = Pj÷zq.,j. _, 0<j < n

rl

q., j = l-I Pk, n > 1
k=j+l

n

Mn= I-I pk, n_>l
k=l

r.+ 1= q_,0 = Mn, n > 1

Ch. u = p..l q.,j, 0 <- j -<n

pjch, _ rj = M., 1 _<j<n

Then the procedure outlined above yields, by induction,

17

The Complete Factorization Theorem (CFT)Let

then

alternatively,

where

BMt = Bpl = Ipl /

BM..1 = Tp_.,, r.., (lp.., ® BM.), n > 1 /

n

')¢M. = BM. H (Iq.., ® Apj. rj)(Iq.,, ® 'Wpj®It,)
j=l

1

q4)M.= I=I (lq..j ® % ®Irj} (lq.., ® Ap_.r))CM.

j=n

CM1 = Cp, = Ipz /

CM..I = (Ip.._ ® CM.) Tr..1, p..1, n > 1[

(14)

(15a)

(15b)

Notice that BM, is a permutation matrix of order M,. Also notice that the notation is not complete

because the matrix BM. depends on the ordered set of integers p _, P2 p,, and not simply on

their product M,. In fact, by induction,

BM. = H (lq_.j ® Tp, rj)

j=FI

(16)

Since matrix multiplication is not commutative, any permutation of the order of the pj would

change the matrix BM,. Also, the arrays r and q are defined with respect to the ordered sequence

of p's.

Proof: First we prove (15a). First note that rl = qn. n = 1, Ap,, r, = Ip SO that the theorem is true for

n = 1, 2, 3. Assume it is true for n. Then

'WMº.,=Wr,.,M.=Wr,.,,..,

Setting p = p,. _, p = r°. _= M, in the fundamental factor theorem gives

'rq_.., = Tp.. ,. ,..,(Ip.., ® 'WM.)Ap,.. ,r.., (qYp.,,., ® I,.. ,)

18

By the induction hypothesis, q4t_, is given by the theorem. Hence, by the distributive law,

n

Ip.., ® q4'Mo= (Ip.., ® BM.) I"[{Ip_., qo.:® Ap,, r,)(Ip.., q.., ® qa_pj® Irj)
j=l

But Pn + 1qn, j = qn + 1, j" Hence,

n

V[vI.., = Tp..,,r..,{Ip.., ® BM.) H (lq..,., ® Ap,. rj}(lq..,., ® Wp, ® I} Ar_.,, _.., (Wry., ® I,..,)
j:l

The last two factors are simply those forj = n + 1. Therefore, the (15a) is proved. Equation (15b)

can be proved similarly.

Computing the DFT using the CFT

To compute the DFT of a vector, two basic matrix-vector algorithms are needed.

I. b=(lq ® q4_p® I,)_

II. _=(Iq ® Ap.r)b

The definitions yield:

p-I

bkpr ÷lr+m=

et=0

O,)/_takpr + err + m

_kpr + lr + m = o_mbkpr + h" + m

for 0 < k < q, 0 < 1 < p, 0 < m < r, and, for any 13, e)_ = exp(2ni / 13). In the binary case,

I: b(_ =a(x+aet+r /b8 a_._-al3

II: co(= ba l

c[_ = o_ b_ I

for a = 2kr + m, b = (2k + 1)r + m

with0<k<q, 0<m<r

19

Ofcourse,thereremainsthethef'malmultiplicationof avectorbythepermutationmatrixBM_"This

requires an expression for its column function. To obtain this, we briefly digress into number

theory.

Theorem Ifj is any integer in the range 0 -<j < M, thenj has the unique representations

n

(1) j= _ O_krk
k=l

(2) J= Z _kqn, k
k=l

with 0 < ctk, {3k < Pk where the a and 13are given by:

({)
/ R_ = [_--_{],oq =j - p_R_

/for k : 2,..., n, Rk = [___L], O.k = Rk_ 1 _ pkRk

(2)
] Q1 =[J] ' iBn= j- pnQ"

/for k = n, • •., 2, Qk - { = [pk_--_l],_k- { = Qk - Pk- {Qk- {

where [x] is the greatest integer less than or equal to x.

Proof: of (1). The definition of Ix] gives

J-1 <Rk < J---"
Pl -Pl

giving 0 < oh < p,

and

Rk-_____L.I < Rk < Rk - 1
Pk Pk

gives 0 < otk < Pk.

2O

Next,

and, by induction, Rk < qn, k

Hence, Rn < 1, that is, Rn = 0.

Thus,

MnRI< J----<--=qn. 1
-Pl Pl

n n

O_krk_l_lrl-Jc _ _krk

k=l k=2

n

=j-plRI+ _ {Rk-l-pkRkjrk
k=2

n

=j-plR1 + Y_
k=2

(Rk- Irk-- Rkrk + 1)

=j - plR1 + Rlr2- Rnrn+ 1

I1

but r 1 = Pl' Rn = 0, so Y_ O_krk= j.
k=l

(2) is proved similarly.

The Scrambling Matrix The column function for the scrambling matrix, BM, can now be

n

given. For 0 < j < M n, we have j = _ [_kqn, k. The column function is
k=l

n

CBM,(j) = _ _krk
k=l

This is easily proved by induction on n.

For n = 1, k = 1, ql, 1 = rl = 1 and j = 131 = c(j) which is correct since Bp_
matrix.

Assume the result is true for n. By the recursive definition,

= Ip, the identity

BMo., = Try.,. r..,(Ip.., ® BM.)

21

n+l

and for 0 < j < M n + 1 use the representation j = _
k=I

_kqn + 1, k. Since qn + 1. k = Pn + I qn, k for

n

1 < k _<n, we can write j =
k=l

_kqn, kPn + I + _n + I , orj = I p.. I + m with

so that

n

l= _ 13kq,.k,m=_n+l
k=l

0<1 <M n =rm+ I' O< m < Pn+l"

By definition of the perfect shuffle,

n

1= _ 13kq.,k,m=13.+l
k=l

Let D = Ip,. _® BM,. The column function for D is

CD(I + mMn) = mMn + cB.(1) = fin + I r. + I + CB,(1).

By the inductive hypothesis

Hence,

CB,(1) = _ _krk

k=l

n n+l

CB..,{jl=cI_c_j}]=I_n+Irn+I + E _krk= _ _krk

k=l k=l

Calculation of cBu,{j) is easily implemented. If

n

j= _ [llqn, l
I=I

then

Define

n

k-cO)= _ [ilrl
1=1

22

thcn

Set j = 0

ITI

k_:_ _lrl, 1 < m <n, ko=0
1=1

k_=k__l+13mr m, 1 <m<n, lq=k

fork 1 :=Otor2-1byrldo

fork 2:=k 1 tor3-1 byr2do

for km := km.-I tO rm+l - 1 by rm do t

for kn := l(n-I tO M - 1 by rn do]/

begin

cO) :=kn;

j:=j+1;

end;

"n" loops (17)

I1

Altematively, define Jn = E

l=m

Thus, set K = 0

l_lql, n, i < m < n, So that Jl = J and Jm = Jm + 1 + _mqn. n, 1 < m < n.

forjn:=Otoqn, n_l--1 byqn. ndO

for jn - 1 := Jn to qn, n - 2 - 1 by qn, n - 1 do

for jm := jm + 1 to qn. m - 1 - 1 by qn, m do[

Jforjl:=j2toM-lbyqn, ldo

begin

cO1) := k;

k:=k+l;

end;

"n" loops

(18)

23

n

For the binary case, pj = 2, rj = 2j - 1, qn, i, = 2n - j" So if j =
k=l

15k2n -k, 0 < lSk < 1, then

k=l

[8k2k - 1, 0 -< 18k-< 1

is the column function, which can be written

N

cB(j)" Z _n+ l-k 2n'k

k=l

so B is symmetric and hence B -_ = B. Thus when j is represented as an n-bit binary number, c(j) is

obtained from j by simply reversing the order of its bits. For this reason, B is also called the

bit-reversal matrix. In this case, a simpler notation can be used for the perfect shuffle and square

deal matrices. Define

Thenwithj =
k=l

T2°--T22.-:}S2* 52.2"" n>- 1, TI=SI=I1

15k2n - k, the column functions for S and T are

n

CT(j) = _ Tk2 n- k
k=l

n

cs0)= _ Ok2 n'k
k=l

where _, I = 15n ' _'k = 13k- 1' k > 1, _, 1 = ISn' On = 131 ' Ok = ISk + 1' k < n. Thus writing j in

binary notation: j = I]1132...I] n _ 113n gives

So CT0) = is obtained by shifting the bits in j one place to the right, end around, and Cs(J) is

24

obtainedby shifting the bits one place to the left, end around.

We now introduce one more permutation matrix, the exchange

column function Cx(j):

matrix X2,, defined by its

n

cx01-
k=l

J= E 13k2"-k
k=l

Zk2 n-k, Z1 = _n, Xn = 131, Zk = _k, 1 < k < n

Thus, the action of X is to exchange the first and last bits ofj. So

Thus, if

cx(2k + 1)=2k+M /

cx(j) =j for all other values ofj
(19)

b=X_,

then b is obtained from _ simply by moving the appropriate element _(M/2 - 1). Note that X is

symmetric. In other words, the odd numbered components in the first half of _ are exchanged with

the even components of the second half of _. Directly from the definitions we have

B2 = X 2 = T2 = S2 = I

B4 = X 4 = T4 = S 4

B 8 = Xs

T2" = X2 °(I2 ® T2"-')= (T2°-_® I2)X2 *

S2" = (I2 ® $2"-') X2* = X2* ($2"-_® I2)

B2 o = T2*(I 2 ® B2*-,) = (B2.-1® I2) T2.

B2* = T2* (I2 ® B2*-t) = (B2*-'® I2) T2o

= (I2 ® B2*-') $2" = $2" (B2*-_® |2)

=(I2 ® B2 *-2 ® 12) X2" = X2* (I2 ® B2 *-2 ® I2)

(20)

25

By induction, these yield,

T2"=nI'T'I2(I2J®X2 j-')= h (X2*-+®I2J) 1
j =0 j=n-2

°-_ _ i/'n->_$2" = II (x2,-J ® 12J)= (I2J ® x2=-J
j=O j=n-2

121)

and

B2 °= H (I2J®X2 *'2i®I2j)
j=0 n>2

o /'= 1-I 112'® X2°2' ® I2')

(22)

So scrambling, shuffling, and dealing can be done purely in terms of exchange matrices.

26

Form Approved

REPORT DOCUMENTATION PAGE o_e No oro4-of_

p.e_ -wo._ ,._. b, _ _k_.. ol_._. _ ..m..* _ .*,.m I ,o.,p_:Ww. t_.,,_ the,_.. _, .._. ,N2.__?. _._2--_,_--_ "____;_
Mlhe_tna and ma,lmJllna tlw dal• need°doand coml_etk_l____an° reviewingthe oolk_llon of Inl_. _4no nammonw mtlammg 1msmJmen llmmmw uvwr; u,mm _m__._.Q_. N

D•vis Highway. Bull° 1204. Alllnglon. VA 22202..4__'F)__,andre the Olfloe m Ma.-t_emel_ and BUO0et,P,aperlmll_Heot_'UonI.'role¢l{u/u*,*_z_ej. wurm_u,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A DiscreteFourier Transform forV'mual Memory Machines

8. AUTHOR(S)

David C. Galant

;7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffctt Field,CA 94035-1000

i9.SPONSORING/MONITORINGAGENCYNAME(B)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

506-59-31

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-92048

10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM- 103914

11. SUPPLEMENTARY NOTES

Point of Contact: David C. Galant, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000

(415) 604-4851 orFTS 464-4851

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category - 67

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 worda)

An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the

details of the theory leads to a eomputationally efficient fast Fourier transform for use on computers with

virtual menm_. Such an algorithm is of great use on modem desk top machines. A Fortran coded version of

the algorithm is given for the case when the sequence of numbers to be transfomaed is a power of two.

14. SUBJECTTERMS

Discrete Fast Fourier Transform, Computer implementation, Numerical

analysis

17. SECURITYC'*SSI_IOAT|ON1_. SECURITYCLABSIFICAT|ON
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-_B0-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

30
16. PRICE CODE

A03
20. LIMITATION OF ABSTRAG

Standard Form 298 (Rev. 2-89)
_sc¢,b_rf t_v AN_! _c_ 73q _ f_

